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[1] In the process of calibrating distributed hydrological models, accounting for input
uncertainty is important, yet challenging. In this study, we develop a Bayesian model to
estimate parameters associated with a geomorphology-based hydrological model (GBHM).
The GBHM model uses geomorphic characteristics to simplify model structure and
physically based methods to represent hydrological processes. We divide the observed
discharge into low- and high-flow data, and use the first-order autoregressive model to
describe their temporal dependence. We consider relative errors in rainfall as spatially
distributed variables and estimate them jointly with the GBHM parameters. The joint
posterior probability distribution is explored using Markov chain Monte Carlo methods,
which include Metropolis-Hastings, delay rejection adaptive Metropolis, and Gibbs
sampling methods. We evaluate the Bayesian model using both synthetic and field data sets.
The synthetic case study demonstrates that the developed method generally is effective
in calibrating GBHM parameters and in estimating their associated uncertainty. The
calibration ignoring input errors has lower accuracy and lower reliability compared to the
calibration that includes estimation of the input errors, especially under model structure
uncertainty. The field case study shows that calibration of GBHM parameters under
complex field conditions remains a challenge. Although jointly estimating input errors and
GBHM parameters improves the continuous ranked probability score and the consistency
of the predictive distribution with the observed data, the improvement is incremental.
To better calibrate parameters in a distributed model, such as GBHM here, we need to
develop a more complex model and incorporate much more information.
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1. Introduction

[2] The field of flood forecasting faces many challenges,
including uncertainties in precipitation observations and
predictions, in hydrological model parameters and structures,
and in discharge observations [Beven, 2006; Gupta et al.,
2005; Liu and Gupta, 2007]. Most studies on uncertainty
analysis have been focused on calibration of lumped con-
ceptual rainfall-runoff models. Stochastic approaches, espe-
cially Bayesian models, have become the most commonly
used methods for uncertainty analysis of hydrological mod-
els. For example, Kuczera and Parent [1998] used a Bayes-
ian model and the Metropolis algorithm to assess parameter
uncertainty in conceptual catchment models. Bates and
Campbell [2001] developed a Bayesian approach to param-
eter estimation and inference in conceptual rainfall-runoff

models, and used Markov chain Monte Carlo (MCMC)
methods to explore the joint posterior distribution.
[3] Recent studies have been focused on estimating input

uncertainties and model structure uncertainties and their
influence on model parameter calibration. Most of these
studies rely on hierarchical Bayesian models to handle
uncertainty in the forcing term (e.g., rainfall) by using latent
variables, such as multipliers. Kavetski et al. [2003, 2006]
developed a Bayesian total error analysis methodology
(BATEA) to allow a modeler to incorporate, test, and refine
the existing understanding of all sources of data uncertainty
directly and transparently. Ajami et al. [2007] developed
an integrated Bayesian uncertainty estimator (IBUNE) with
inclusion of a Bayesian model averaging (BMA) scheme to
account for input, parameter, and model structure uncertain-
ties. Vrugt et al. [2008] developed a hierarchical Bayesian
model and a novel MCMC sampler, a so-called differential
evolution adaptive Metropolis (DREAM), to analyze input
uncertainty. Renard et al. [2010, 2011] demonstrated the
importance of prior information for estimating the input
and model structure errors and for decomposing predic-
tive uncertainty. While all those methods use hierarchical
Bayesian models, they differ in the handling of latent vari-
ables [Ajami et al., 2009; Renard et al., 2009] and in the
computational methods used to sample from the posterior.
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[4] Although uncertainty analysis of distributed models is
also important, few such investigations have been performed.
Compared with lumped conceptual hydrological models,
distributed models are expected to have lower model
structure uncertainties because of the spatially distributed
description of landscape conditions and the physically based
representation of hydrological processes. However, distrib-
uted models introduce a large number of parameters that
typically are difficult or impossible to observe directly and
are difficult to estimate by calibration due to poor identifia-
bility. Although physically based distributed hydrological
models have become increasingly popular over the past two
decades [Singh and Woolhiser, 2002], the uncertainty asso-
ciated with those models has not received much attention.
Current studies on calibration of distributed models mainly
focus on utilizing multiple observations [Immerzeel and
Droogers, 2008; Khu et al., 2008] or multiple objective
functions [Marcé et al., 2008; Shrestha and Rode, 2008].
[5] In this study, we develop a hierarchical Bayesian

model, following a similar approach to that given byKavetski
et al. [2003, 2006] and Vrugt et al. [2008], to calibrate a
physically based distributed model for event-based mountain
flood prediction. Within Gaussian likelihood functions, the
discharge is split into two categories (i.e., low flow and high
flow) [Schaefli et al., 2007]. We use the first-order auto-
regressive model to simulate temporal correlation in the
residuals [Sorooshian and Dracup, 1980; Thyer et al., 2002].
To achieve good sampling efficiency, we combine different
MCMC sampling strategies, similar to those used by Chen
et al. [2007]. We apply the developed Bayesian model first
to synthetic data sets for investigating the influence of input
uncertainty on hydrological model calibration, and then to
field data sets collected from a small catchment in the
Yangtze River basin in China.
[6] The remainder of this paper is organized as follows.

Section 2 describes the distributed hydrological model and
study area. Section 3 describes the parameterization and
development of the Bayesian model based on the distributed
hydrological model. Section 4 describes the MCMC sam-
pling strategies for exploring the posterior distribution. The
synthetic and field studies are given in sections 5 and 6,
respectively; discussion of the results and conclusions are
provided in sections 7 and 8, respectively.

2. Distributed Hydrological Model
and Study Area

2.1. Geomorphology-Based Hydrological Model

[7] In this study, we use a geomorphology-based hydro-
logical model (GBHM) [Cong et al., 2009; Yang, 1998; Yang
et al., 2004], which utilizes geomorphologic characteristics
to simplify the model structure and physically based methods
to represent hydrological processes. The GBHM differs from
other physically based models, such as the Systeme Hydro-
logique Europeen [Abbott et al., 1986], mainly in the dis-
cretization scheme and parameterization. The GBHM takes
advantage of geomorphologic similarity to maintain hydro-
logical similarity. The grid size in GBHM is therefore larger
than that in the digital elevation model (DEM), leading to a
significant reduction in spatial-structure complexity.
[8] The GBHM uses the hillslope-stream formation to

represent catchment topography. A catchment is divided into

many subcatchments, and the different subcatchments are
organized based on the Pfafstetter system [Yang and
Musiake, 2003]. The grids within a subcatchment are classi-
fied into flow intervals, taking into account the distances of
the grids from the outlet. Each flow interval contributes to a
segment of a mainstream that is the simplification of a stream
network. Flow routing in the stream network is conducted
using the kinematic wave method [Chow et al., 1988]. Hill-
slopes within each grid are expected to be topographically
similar; the topographical characteristics of the hillslopes are
calculated using fine DEM [Yang et al., 2002]. Figure 1 is a
schematic diagram of the GBHM, where the hillslope is
represented by a group of inclined parallel planes with slope
b and length l. Based on the hypothesis of a linear slope, we
introduce a slope-shape factor fss to account for the concave-
convex effects on runoff generation and overland flow
hydrographs. The factor fss is defined as fss = ls /l, where ls
is the saturated outflow length (see Figure 2).
[9] In the GBHM, water flow under the soil surface is

simulated separately by a quasi-two-dimensional subsurface
module along the vertical and parallel directions of the slope.
The topsoil is divided into multiple layers according to their
depths. Distribution of soil water content and hydraulic
characteristics along the hillslope is assumed uniform. Ver-
tical distribution of the saturated hydraulic conductivity in
the soil is set to decrease exponentially with increasing depth
[Robinson and Sivapalan, 1996]. The vertical flow module is
described using the Richards equation and solved by an
implicit numerical scheme. Subsurface flow along the hill-
slope occurs when soil water content surpasses the field
capacity. Groundwater aquifers are discretized (correspond-
ing to the grids) and treated as individual storage compart-
ments. The exchange between groundwater and river water
is expected to be a steady flow and is estimated by Darcy’s
law. GBHM parameters include vegetation, land surface, soil
water, and river parameters [Cong et al., 2009]. A detailed
description of each parameter for calibration is provided in
section 3.1.

2.2. Study Area and Available Data

[10] The Chuzhou catchment, which spans approximately
289 km2 and is located in the Yangtze River Basin of
Southern China, is selected as the study area. Annual pre-
cipitation is approximately 1550 mm, with about 70% of the
annual rainfall occurring from April to September. Floods
occur frequently during the rainy season. The grid size of
the GBHM in the present study is 1 km. DEM data were
collected from the global topography database (see http://
www2.jpl.nasa.gov/srtm/) with a three arc-sec spatial reso-
lution (approximately 90 m). Elevation in the Chuzhou
catchment varies from 379 to 2090 m, with the majority of
the catchment covered by forest. The soil is red loam with an
estimated soil depth of 0.6 m. Since the catchment is rela-
tively homogenous in soil type and land use, the GBHM
parameters are treated uniformly in the Bayesian model. The
developed method can be augmented to account for other
conditions.
[11] We used hourly averaged data collected from 32 large

flood events occurring between 1980 and 2002 for the study,
among which 16 flood events were used for calibration and
another 16 flood events were used for validation. As shown
in Figure 3, seven rainfall gauges and one discharge gauge
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can be found within the catchment. The rainfall input is
interpolated using the angular distance-weighted (ADW)
method [New et al., 2000]. Daily pan evaporation data were
obtained from a meteorological station located in Suichuan
County, approximately 60 km away from the center of the
catchment. A subcatchment of Chuzhou was selected for the
synthetic study. Three rainfall gauges and one synthetic dis-
charge gauge were located in the synthetic basin. Data for
two synthetic rainfall gauges were derived from nearby
available gauges. Generation of synthetic discharge data is
described in section 5.1. Since the durations of those flood

events in the study area do not overlap, we simulate each
flood individually.

3. Bayesian Model

3.1. Model Structure and Parameterization

[12] We develop a Bayesian model to calibrate parameters
in the GBHM. They include the following: (1) the ratio of
basin mean potential evaporation to gauged pan evaporation
(kep); (2) the saturated hydraulic conductivity in the topsoil
layer (Kt), the bottom soil layer (Kb), and the unconfined

Figure 1. Schematic diagram of the geomorphology-based hydrological model (GBHM).

Figure 2. Definition of saturated outflow length ls in an actual hillslope and a GBHM hillslope.
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aquifer (Kg); (3) the slope shape factor ( fss); (4) the maximum
surface storage (dsurf); (5) the specific yield (Sy); and (6) the
roughness on the hillslope surface (ns) and on the river
channel (nc). For simplicity, let vector q = (kep, Kt, Kb, Kg,
fss, dsurf, Sy, ns, nc)

T , where T is the transpose operator.
[13] The simulated discharge of the GBHM model is

represented by

qsimt ¼ h xinpt ; q
� � ¼ g xt ;j*t ; q

� �
; t ¼ 1;…; n ð1Þ

where qt
sim denotes the simulated discharge at the time step t;

h(xt
inp, q) represents the mapping of the GBHM model with

parameter q, and input xt
inp, which will be described further

by the measurement of input xt and jt* for estimation of the
input errors; g(xt, jt*, q) represents the mapping of the
GBHM model with rainfall observation, estimated input
errors, and model parameters. In the present study, we con-
sider one discharge station only, although the model can be
modified to accommodate more gauges under more complex
conditions. Model inputs are specified as rainfall in the study,
and errors jt* are specified as relative rainfall errors, i.e.,
xt,j
inp = xt,j /(1 + jt,j*), where j is an index of rainfall gauges.

Generally, jt,j* depends on gauge locations, equipment prop-
erties, and many other unknown factors.
[14] We use event-based methods, similar to those used by

Kavetski et al. [2006] and Vrugt et al. [2008], to develop the
Bayesian inference equations. We assume that the errors in
precipitation are independent across storms and constant
within storms. Let jk,j =jt,j*, t∈ Tk, where k is an index of the
storm series and Tk is the set of time steps during the kth
storm. We also assume that jk,j at each gauge follows a
truncated normal distribution [Huard and Mailhot, 2008] on
the interval (�1, +∞), having a mean of mj and an inverse
variance of tj (see Appendix A) for different storms.
[15] Following the method of Schaefli et al. [2007], we

divide the discharge data into low-flow data Y and high-flow
data Z. Such division is reasonable for the current study
because the low-flow data are mainly dependent on ground-
water storage, whereas the high-flow data are mainly deter-
mined by rainfall intensity and flow routing. Empirically, the
separation of flow data makes parameter estimation more

stable. We adopt a daily time step for the low-flow periods
since the associated variations in discharge are typically
very small. For the high-flow periods we use an hourly time
step. Since the residuals between observed and simulated
discharge are often temporally correlated, we employ the
first-order autoregressive model (AR(1)) used by Bates and
Campbell [2001] and Sorooshian and Dracup [1980] to
analyze the model residuals. Thus, the relationship between
the observed and simulated discharge is given by

yt ¼ ysimt þ ɛy;t ¼ ysimt þ ryɛy;t�1 þ wy;t; ð2Þ

where yt is the observed data, yt
sim is the model simulation,

ɛy,t is the model residual, ry is the correlation coefficient of
the AR(1) model, and wy,t is the Gaussian noise with zero
mean and unknown variance. Let ty denote the inverse var-
iance of ɛy,t, and the inverse variance of wy,t is given by ty

w =
ty /(1 � ry2) [Naidu, 1996]. The likelihood of parameters
associated with the given data could be derived in terms of ty.
Similarly, the correlation coefficient and inverse variance for
the high-flow discharge are denoted as rz and tz, respec-
tively. Consequently, we can write the Bayesian model for
given inputs X and flow data (Y, Z) as follows:

f ðq;j;mj; tj; ry; ty; rz; tzjX;Y;ZÞ
∝ f ðYjq;j; ry; ty;XÞf ðZjq;j; rz; tz;XÞ

� f ðjjmj; tjÞf ðmjÞf ðtjÞ
� f ðryÞf ðtyÞf ðrzÞf ðtzÞf ðqÞ; ð3Þ

where f() denotes the probability distribution function (pdf)
and “∝” means “is proportional to.” The left side of
equation (3) is the joint posterior pdf of all variables for
estimation given measurements at the discharge station. The
first two terms on the right side of the equation represent the
likelihood functions of low- and high-flow data. The third
term on the right side represents the hierarchical prior model
of input error j characterized by two hyper-parameters.
The other terms are the prior distribution functions of the
remaining parameters. Each prior function of those param-
eters is assumed independent of the others. Note that a nor-
malizing constant was omitted in equation (3), which does
not affect the analyses in the present study because we use an
MCMC sampling method.

3.2. Likelihood Function

[16] We assume that the individual flood events are inde-
pendent of each other. Consequently, the likelihood function
of the entire data set is the product of the likelihood functions
of individual flood events. This assumption is justified in
the present study because the duration of a flood event is no
more than 2 days, but the 32 flood events are selected over
18 years, and the time gaps between the flood events within
a year are 10–100 days. Under the assumptions listed in
section 3.1, the likelihood functions are multivariate normal
with an AR(1) correlation structure. For the low-flow data
of the kth flood Yk, the likelihood function is

f Yk jq;jk ; ry; ty;Xk

� �
∝ Skj j�1

2 exp � 1

2
Yk � Ysim

k

� �TS�1
k Yk � Ysim

k

� �� �
; ð4Þ

Figure 3. Description of the Chuzhou catchment and the
synthetic basin, where “Q” and “P” refer to discharge gauges
and rainfall gauges respectively, and “syn” refers to synthetic
gauges. One actual rainfall gauge and two synthetic rainfall
gauges are used for the synthetic study.
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where Sk denotes the covariance matrix of the residuals for
the kth flood event. The likelihood function is further written
as (see Appendix B)

f Ykð jq;jk ; ry; ty;XkÞ∝ Rkj j�1
2 ty

1
2n exp � 1

2
tySk

� �
; ð5Þ

where Rk denotes the correlation coefficient matrix of
the model residuals, Sk = Rk /ty, and Sk = (Yk � Yk

sim)T

Rk
�1(Yk � Yk

sim).

3.3. Prior Models

[17] We assume that each element in vector q is indepen-
dent of others, since they represent different physical char-
acteristics of the catchment. The prior function of q can be
written as the product of each individual prior distribution.
All elements (or the logarithmic transforms) of q are uni-
formly distributed over the given prior ranges (see Table 1)
based on their physical properties and our calibration expe-
rience. We use the base 10 logarithmic transformations
because elements Kt, Kb, Kg, fss, Sy, ns, and nc vary by several
orders of magnitude.
[18] The prior distribution of relative rainfall errors is

assumed to be given by a truncated normal distribution (see
Appendix A). Each component in j is assumed to be inde-
pendent of others. The prior distribution function of j.,j (i.e.,
the component of j at the jth gauge) can be obtained as

f
�
j⋅; jjmj; tj

�
∝ y�nktj

1
2nk exp � 1

2
tjSj; jnk

� �
if j⋅; j > �1;

0 otherwise
;

8<
:

ð6Þ

where nk is the number of storms, y = 1 + erf((mj + 1)
(tj /2)

1/2), Sj,j =
P

k=1
nk (jk,j � mj)

2/nk, and erf( ) is the error
function.
[19] We assume that the prior distribution of the mean

relative rainfall error, mj, has a uniform distribution on
(�0.05, 0.05), that is, a maximum of 5% systematic relative
errors. As pointed out by Renard et al. [2010, 2011], the prior
range of tj (i.e., the precision of prior information about
input errors) is critical for the inference of input errors. In the
present study, we start from an informative prior in which the
standard deviations of the truncated normal distributions of
the input errors are between 5% and 15%. The upper bound
(i.e., 15%) is the same as the one used by Salamon and Feyen
[2010]. To investigate the effects of the upper limit on cali-
bration, we also use other values as the upper bounds,
including 10%, 20%, and 30%, for both synthetic and field
case studies. Since the range between 5% and 15% in the
standard deviation is equivalent to the range between 44.4

and 400 in the inverse variances, we use uniform distribution
on (44.4, 400) as the prior distribution for tj.
[20] The prior distribution functions of the autocorrelation

coefficients ry and rz are also set as the uniform distributions
on (0, 1). Noninformative prior distributions are employed
for inverse variances ty and tz as used by Chen et al. [2008],
which are represented by gamma distributions G(a0, l0) with
shape parameter a0 and inverse scale parameter l0 of 1e-3.

4. MCMC Sampling Method

[21] We use MCMC methods to sample from the joint
posterior distribution. In section 4.1, we derive the condi-
tional distributions for unknown variables. We describe the
specific MCMC sampling methods in section 4.2. The con-
vergence diagnostics used for the present study are given in
section 4.3.

4.1. Conditional Distributions

[22] We derive the conditional distribution of each param-
eter from equation (3) given all the others. The conditional pdf
of the GBHM parameters is given as

f qð j⋅Þ∝ f Yð jq;j; ry; ty;XÞ f Zð jq;j; rz; tz;XÞ f qð Þ: ð7Þ

[23] The conditional pdfs of the other variables are simi-
larly obtained.
[24] The conditional pdfs of ty and tz are gamma dis-

tributions, because gamma distribution is a conjugate prior of
the Gaussian likelihoods. Thus, the conditional distribution
of ty is given by

f tyj⋅
� � ¼ f Yjq;j; ry; ty;X

� �
f ty
� �

∝ ty
1
2

Pm

k¼1
nk exp � 1

2
ty
Xm

k¼1
Sk

� �
⋅ tya0�1 exp �l0ty

� �
∝ ty

1
2

Pm

k¼1
nkþa0�1 exp � 1

2

Xm

k¼1
Sk þ l0

� �
ty

� �

∝G
1

2

Xm

k¼1
nk þ a0;

1

2

Xm

k¼1
Sk þ l0

� �
: ð8Þ

4.2. Sampling Strategies

[25] MCMC methods provide a more powerful approach
than conventional Monte Carlo methods in drawing samples
from high-dimensional joint distribution functions [Chen
et al., 2008]. Previous studies have used various MCMC
sampling methods, including Metropolis-Hastings (MH)
methods [Hastings, 1970; Metropolis et al., 1953], delayed
rejection adaptive Metropolis (DRAM) algorithms [Haario

Table 1. Prior Ranges of Parameters for Calibration of the GBHM

Number Parameter Description of Parameter Unit Distribution

1 kep Coefficient of potential evaporation U(0.5, 1.5)
2 log(Kt) Saturated hydraulic conductivity of topsoil mm/h U(1, 3)
3 log(Kb) Saturated hydraulic conductivity of bottom soil mm/h U(0, 2)
4 log(Kg) Saturated hydraulic conductivity of unconfined aquifer mm/h U(0, 1)
5 log(fss) Slope shape factor U(�1.5, �0.5)
6 dsurf Maximum surface storage mm U(3, 15)
7 log(Sy) Specific yield U(�2, �1)
8 log(ns) Roughness on the hillslope surface U(0, 1)
9 log(nc) Roughness in the river channel U(�2.5, �1)
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et al., 2006], and the Gibbs sampler [Geman and Geman,
1984].
[26] We adopt a mixed sampling strategy by applying MH,

Gibbs, and DRAM methods for different parameters con-
sidering their characteristics. Specifically, we use the DRAM
algorithm for q, the Gibbs sampler for ty and tz, and the MH
method for other variables (j, mj, tj, ry, and rz). The main
steps are outlined as follows:
[27] (1) Initialize each variable as q(0), j(0), mj

(0), tj
(0), ry

(0),
ty
(0), rz

(0), and tz
(0), and then set i = 1;

[28] (2) Update j, mj, tj, ry, and rz using MH methods,
and refer to them as j(i), mj

(i), tj
(i), ry

(i), and rz(i);
[29] (3) Update q using the DRAM algorithm, and refer to

them as q(i);
[30] (4) Update ty and tz using the Gibbs sampler, and

denote them as ty
(i) and tz

(i). Let i = i + 1;
[31] (5) Repeat Steps 2 to 4 until the maximum number

of allowable iterations is reached.
4.2.1. Metropolis-Hastings Sampling Method
[32] We use the MH sampling method for j, mj, tj, ry,

and rz. The MH sampling method, one of the most widely
used MCMC sampling methods in hydrological studies
[Bates and Campbell, 2001; Kuczera and Parent, 1998;
Marshall et al., 2004; Schaefli et al., 2007], entails four steps.
To sample mj, a candidate value mj* is first generated from a
proposed normal distribution N(mj

(i�1), sm2), where sm is
the standard deviation. The probability for accepting the
candidate value is then calculated based on its conditional
distribution as

v1 ¼ min 1;
f ðm*j ⋅j Þ

f
�
m i�1ð Þ
j ⋅

��� 	
:

(
ð9Þ

[33] Subsequently, a random value v is generated uni-
formly from an interval (0, 1). If v < v1, we set mj

(i) = mj*;
otherwise, mj

(i) = mj
(i�1). In MH sampling, the parameter sm is

important for convergence. If sm is too large, the rejection
rate of the proposed candidates will be too high, whereas if
sm is too small, the chain moves slowly and the tail regions of
the joint posterior may not be sampled sufficiently [Bates and
Campbell, 2001]. Hence, the MH method is suitable for
sampling the variables that are relatively less sensitive to the
value of sm, and the DRAM algorithm is suitable for sam-
pling those variables that are very sensitive to the value of sm.
4.2.2. DRAM Algorithm
[34] We use the DRAM algorithm for q. The DRAM

algorithm is developed based on a global adaptive sampling
strategy, Adaptive Metropolis (AM) [Haario et al., 2001],
and a local adaptive sampling strategy, Delayed Rejection
(DR) [Green and Mira, 2001]. The AM algorithm initially
calculates the correlation matrix of the variables from previ-
ously obtained samples and then provides a correlated pro-
posal for Metropolis sampling methods. The AM algorithm
appears to be efficient when the posterior correlation of
variables is large, a common situation for hydrological
parameters in calibration. The DR algorithm is also a variant
of the MH algorithm. In the DR algorithm, when a proposed
candidate is unwanted, it is not immediately rejected. The
algorithm generates another candidate based on the first
candidate at a second stage [Green and Mira, 2001]. In the
present study, the two-stage DR is used considering the cost
of additional computations. When combined, DR and AM

complement each other. The adaptation of the AM algorithm
will fail when the variance of the proposal is too large; the
DR algorithm provides a remedy to this problem by reducing
the variance at the second stage [Haario et al., 2006].
Although the DRAM algorithm is a non-Markovian sampler,
the ergodicity of the method has been proven byHaario et al.
[2006] under weak conditions. To avoid the potential errors
in the estimated posterior distributions caused by adaptive
processes, we combine MH sampling methods with DRAM
algorithm for a hybrid sampling strategy.
4.2.3. Gibbs Sampler
[35] We use the Gibbs Sampler for ty and tz. Gibbs

sampling methods [Gelfand and Smith, 1990; Geman and
Geman, 1984] draw samples in succession from the condi-
tional distributions of each parameter given the current
values of all other parameters. The main advantage of Gibbs
sampling is that all the samples are accepted, thereby avoid-
ing wasting computing time on rejected samples. However,
Gibbs sampling requires sampling directly from the condi-
tional distribution, a requirement often difficult to fulfill. In
the present study, because the analytical form of the condi-
tional distribution of ty and tz is the gamma distribution as
given in equation (8), ty

(i) and tz
(i) can be sampled directly.

4.3. Diagnostic of Convergence

[36] Following the methods described in section 4.2, many
samples of parameters, that is, (q(i),j(i), mj

(i), tj
(i), ry

(i), ty
(i), rz

(i),
tz
(i), i = 1, 2, …, Im), can be obtained. These samples are the

approximations of the samples drawn from the target joint
functions defined in equation (3) after a long burn-in process
[Gilks et al., 1996]. The posterior marginal distributions of
the parameters can be estimated by empirical distributions
based on the drawn samples. A potential scale reduction
factor (PSRF) developed by Gelman and Rubin [1992] is
used to find the burn-in number and monitor the convergence
of the chains. We run three to five MCMC chains from ran-
domly generated initial values and accept them if the PSRF
of each parameter is smaller than 1.2.

5. Synthetic Case Study

[37] To evaluate the effectiveness of the developed
Bayesian model, we generated synthetic data sets for cali-
bration. We will first show how input uncertainty affects
estimation of the GBHM parameters and then examine
identifiability of the input uncertainty when model structure
uncertainty is large.

5.1. Calibration Results of GBHM Parameters
and Input Errors

[38] As shown in Figure 3, we chose a subregion of
the Chuzhou catchment with three rainfall gauges and one
synthetic discharge station for the study. We use four
flood events that were generated by the GBHM following
equations (1) and (2) to calibrate the GBHM parameters. For
each flood event, we first calculated flow rates as a function
of time at the discharge station using the true GBHM param-
eters and the rainfall data at the three gauges, and then added
AR(1) noise to the synthetic data. The AR(1) noise was
generated and added separately to the low- and high-flow
data with the corresponding autocorrelation coefficients
and inverse variances that are given in Table 2. We added
synthetic input errors (j) by drawing samples from the
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truncated normal distribution with the mean of mj = 0 and the
inverse variance of tj = 100 (i.e., standard deviation of
10%).
[39] Table 2 lists the true model parameters, prior ranges,

and the estimated statistics of posterior marginal distributions
for all the unknown parameters except the input errors (j).
Generally, the estimated medians and modes of the unknown
parameters are close to their corresponding true values, and
the 95% highest posterior density domains (HPDs) cover
the true values. For the hyperparameters of input errors (i.e.,
mj and tj), the HPDs are very close to their corresponding
prior ranges. This means that the given data sets provide very
limited information for updating those parameters. Addi-
tionally, the AR(1) model parameters related to the high-flow
data (i.e., rz and tz) are better resolved than those related to
the low-flow data (i.e., ry and ty). This is because we have
used more information (hourly data) for the high flow than
that for the low flow (daily data).
[40] Figure 4 compares the estimated input errors with the

corresponding true values. Overall, the estimated posterior
medians of j are close to the true values. However, uncer-
tainty associated with the estimates is still high after cali-
bration because the posterior distributions are widespread
with most of the HPDs extending over 20% around the value
of 0.

5.2. Effects of Input Uncertainty on Calibration

[41] To illustrate the influence of input uncertainty on
estimation of the GBHM parameters, we conducted com-
parative case studies with and without estimating j in the
Bayesian model. We generated synthetic data sets with two
levels of input errors (i.e., 10% and 15%). However, we
estimate the GBHM parameters under two different situa-
tions, one ignoring the input errors and the other jointly
estimating the input errors.
[42] Table 3 summarizes the results of the comparative

studies. We use the average of the absolute errors of the
calibrated medians relative to their corresponding prior ran-
ges as a measure of accuracy, and the average of the rela-
tive standard errors as a measure of uncertainty. We use the
percentage of the true values covered by the estimated HPDs
as a measure of reliability. It is evident that the calibration
ignoring input errors has lower accuracy and lower reliability

for the input errors of 10% and 15%. The negative effects on
model calibration of ignoring input uncertainty increase with
increasing of the input errors. Such results are consistent with
the findings of many previous studies [e.g., Kavetski et al.,
2006; Vrugt et al., 2008; Thyer et al. 2009] that found
neglecting input uncertainty in calibrating hydrological
models would cause biases and underestimate parameter
uncertainty.
[43] Figure 5 compares the estimated probability densities

of each GBHM parameter with (black curves) and without
(red curves) considering input errors for the case study hav-
ing 15% input errors added. The black triangles are the true
values, and all the priors are assumed to be uniform on the
ranges shown in the figures. From the figure, we can see that
although the influence varies depending on the parameters,
ignoring input uncertainty clearly leads to worse estimates.
As shown in Figure 5, the calibration of hydraulic conduc-
tivity in an unconfined aquifer (Kg) is biased for both situa-
tions. This is because the parameter is mainly determined
by the low-flow data, which are very limited in the syn-
thetic study considering the short daily time steps and high
autocorrelation.

5.3. Effects of Model Structure Uncertainty

[44] To investigate the robustness of the Bayesian cali-
bration method under model structure uncertainty, we con-
ducted a synthetic study in which model structure errors were
generated from the GBHM parameters with storm-dependent
random biases. In accordance with the hypothesis proposed
by Kuczera et al. [2006], the structural errors in the GBHM
can be characterized by storm-dependent random variations
of a subset of the model parameters. In this study, we let six
GBHM parameters (i.e., kep, Kg, fss, dsurf, Sy, and ns) vary

Table 2. True Values, Prior Ranges, and Estimated Statistics of
the Calibrated Variables for the Synthetic Study With 10% Input
Errors, Where “HPD” Refers to the 95% Highest Posterior Density
Domains

True Value Prior Range Mode Median 95% HPD

kep 1 (0.5, 1.5) 0.678 0.770 (0.502,1.274)
log(Kt) 2 (1, 3) 2.206 2.173 (1.683,2.592)
log(Kb) 1 (0, 2) 0.863 0.949 (0.471,1.604)
log(Kg) 0.5 (0, 1) 0.578 0.565 (0.381,0.725)
log(fss) �1 (�1.5, �0.5) �1.139 �1.106 (�1.421, 0.780)
dsurf 9 (3, 15) 11.976 11.772 (8.606,14.855)
log(Sy) �1.5 (�2, �1) �1.240 �1.268 (�1.566, �1.000)
log(ns) 0.5 (0, 1) 0.466 0.462 (0.327,0.570)
log(nc) �1.75 (�2.5, �1) �1.745 �1.740 (�1.944, �1.521)
m8 0 (�0.05, 0.05) �0.005 �0.003 (�0.049, 0.044)
t8 100 (44.4, 400) 114.9 140.6 (44.8, 331.6)
ry 0.8 (0, 1) 0.825 0.795 (0.478, 0.973)
rz 0.8 (0, 1) 0.807 0.807 (0.710, 0.919)
ty 100 (0, + ∞) 105.3 113.5 (24.3, 218.8)
tz 25 (0, + ∞) 26.2 26.3 (11.3, 40.2)

Figure 4. Estimated j versus the true values of j in the
synthetic study with 10% input errors. Each point represents
an input error for an individual storm at one particular gauge
(there are a total of four storms and three rainfall gauges).
The solid circles represent the estimated medians, and verti-
cal line segments show the 95% highest posterior density
domains (HPD).
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through different storms. They were randomly sampled from
the uniform distributions whose ranges were obtained by
shrinking their original prior ranges around the mean by
40%. We calibrated the remaining three GBHM parameters
(i.e., Kt, Kb, and nc).
[45] Table 4 is a summary of calibration results under

various conditions. They include the cases where input errors
are ignored by setting j = 0 (see Row 2) and setting j to
their true values (see Row 3), and the cases jointly estimating
the three GBHM parameters and the input errors with the
lower prior bounds of the inverse variance from 1/(30%)2 to
1/(10%)2 (see Rows 4–7). The results show that in the pres-
ence of model structure errors, the joint estimation of GBHM
parameters and input errors provides better calibration of the
three GBHM parameters than estimating GBHM parameters
alone. This is true even if we set the input errors to their true

values in the latter case. The reason is that in the joint esti-
mation, we fit the model to both the storm-dependent input
errors and the unknown model structure errors.
[46] Although the use of latent variables (i.e., j) for

describing input uncertainty has a beneficial effect on esti-
mation of GBHM parameters under model structure errors, it
makes estimation of input errors difficult. This is consistent
with the finding of Renard et al. [2010]. To distinguish
between the input errors and the model structure errors, we
need to use other methods or other types of information to
obtain good priors on the input errors. For example, Renard
et al. [2011] demonstrated that geostatistical analysis of dis-
tributed rain gauge data can provide useful information for
the priors. For this study, since we do not have good infor-
mation about rainfall, we assume that the standard deviation
of the input errors is less than 15%. This is an assumed prior

Table 3. Calibration Results of the GBHM Parameters With and Without Estimating Input Errors in the Synthetic Case Study

Specified Input Errorsa Input Errors in Calibration Mean Absolute Error (%)b Mean SD (%)c Percentage Located in HPD (%)d

10% Estimated 11.35 13.57 100.0
10% Not estimated 12.23 12.62 88.9
15% Estimated 8.07 13.06 88.9
15% Not estimated 18.52 11.02 55.6

aStandard deviation of input errors used for generating synthetic data.
bMean of absolute errors of calibrated medians of GBHM parameters relative to their corresponding prior ranges.
cMean of standard deviations of the posterior distributions of the GBHM parameters relative to their corresponding prior ranges.
dPercentage of true values of GBHM parameters located in the estimated 95% highest posterior density domain for nine parameters.

Figure 5. Comparison of the posterior distributions of the GBHM parameters for the synthetic study with
15% input errors. The black curves are the results obtained by jointly estimating rainfall errors, and the red
curves are those obtained by ignoring rainfall errors (i.e., fixing j = 0). The black triangles are the true
values. All the priors are assumed to be uniform on the ranges shown in the figures.
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restriction introduced from generally heuristic considera-
tions, in an attempt to prevent the input error latent variables
from overfitting the structural errors.

6. Field Case Study

[47] We applied the Bayesian model to the field data set
collected from the Chuzhou catchment in the Yangtze River
basin. We used a group of 16 flood events for calibration and
another group of 16 flood events for validation.

6.1. Selection of the Warm-up Period

[48] To avoid possible influence of the initial state on the
GBHM simulations, we need to initiate the GBHM a number
of days before the data period. The length of the warm-up
period may have significant effects on the model calibration
due to uncertainty in the initial state [Huard and Mailhot,
2008]. Since the Bayesian calibration of a physically based
distributed model is time-consuming and the computing time
is proportional to the number of flood events, we perform a

Table 4. Calibration Results of the Three GBHM Parameters With and Without Estimating Input Errors When the Synthetic Data Include
Model Structure Errorsa

Input errors in calibration Mean absolute error (%)b Mean SD (%)c Percentage located in HPD (%)d

Not estimated (set j = 0) 9.09 6.41 66.7
Not estimated (set j to their true values) 8.65 4.76 33.3
Estimated with tj � [1/(10%)2, 1/(5%)2] 2.81 5.34 100.0
Estimated with tj � [1/(15%)2, 1/(5%)2] 2.80 5.46 100.0
Estimated with tj � [1/(20%)2, 1/(5%)2] 2.62 5.48 100.0
Estimated with tj � [1/(30%)2, 1/(5%)2] 2.91 5.55 100.0

aThe standard deviation of input errors used for generation of synthetic data set is set to 10%.
bMean of absolute errors of calibrated medians of GBHM parameters relative to their corresponding prior ranges.
cMean of standard deviations of the posterior distributions of the GBHM parameters relative to their corresponding prior ranges.
dPercentage of true values of GBHM parameters located in the estimated 95% highest posterior density domain for three parameters.

Figure 6. Comparison of the effects of different warm-up lengths on the model calibration. The black
solid, red dashed, green solid, and blue dashed curves are the estimated posterior probability densities of
GBHM parameters using the warm-up lengths of 7, 20, 30, and 40 days, respectively.
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sensitivity study by using the first two flood events in the
training group to select the warm-up length.
[49] Figure 6 compares the estimated posterior probability

densities of the calibrated parameters using 7, 20, 30, and
40 days for the warm-up period. The results show that kep, Kt,
Kg, dsurf, and Sy are more sensitive to the length of the warm-
up period than other parameters. This is reasonable because
those parameters are directly related to the runoff generation,
which is sensitive to the initial conditions. From the figure,
we can see that the results of using the warm-up lengths of
20, 30, and 40 days are close to each other. Because the
simulation time increases with increasing of the warm-up
length, we select 30 days as the length of the warm-up period
in the subsequent studies.

6.2. Calibration Results of GBHM Parameters

[50] Table 5 lists the calibration results of the GBHM
parameters. The statistics of hydraulic conductivity in the
topsoil (Kt) and bottom soil (Kb) are close to the upper

bounds of their prior ranges. The estimated infiltration
capability at the soil surface (Kt) is much higher than the
database value of the corresponding soil texture (i.e.,
32.7 mm/h). Since the catchment is covered by forests, we
consider the estimated high surface infiltration capability to
be related to the humus layer that is not represented in the
GBHM model. The calibrated slope shape factor ( fss) is
low, corresponding to the low concave-convex effect of the
hillslope on the hydrograph. The HPD of roughness in the
river channel is estimated to be (0.019, 0.027), which is
slightly lower than the observed value at the Chuzhou
gauging station (between 0.04 and 0.07). The calibrated
results are not expected to be exactly equal to the on-site
observations because the calibration may include model
structure uncertainty.
[51] To demonstrate the influence of input uncertainty on

the calibration, we conducted another calibration by ignoring
input errors. The posterior pdfs of the GBHM parameters
estimated through the comparative study are illustrated in
Figure 7. The results are similar to those obtained from the
synthetic study (see Figure 5). Without including input
uncertainty, the estimates of some parameters are different
from those obtained with inclusion of input uncertainty.

6.3. Calibration Results of Input Errors

[52] The calibration results for the hyper-parameters of
the input errors are listed in Table 6. The posterior mode
and median of the mean relative rainfall errors (mj) are about
�0.041, and the HPD of mj is (�0.050, �0.014). These
suggest that the observed rainfall frequently underestimates
the “true” rainfall. The estimated inverse variance in rainfall

Table 5. Estimated Posterior Statistics of the GBHM Parameters

Parameter Mode Median Mean Low HPD Up HPD

kep 1.192 1.196 1.193 0.960 1.439
Kt (mm/h) 956.185 914.086 859.605 613.440 999.986
Kb (mm/h) 95.424 90.367 85.962 63.661 100.000
Kg (mm/h) 3.665 3.669 3.647 3.070 4.489
fss 0.063 0.066 0.066 0.047 0.080
dsurf (mm) 3.112 3.248 3.333 3.000 4.036
Sy 0.010 0.011 0.011 0.010 0.013
ns 2.400 2.387 2.376 1.914 3.036
nc 0.024 0.023 0.023 0.019 0.027

Figure 7. Comparison of the posterior distributions densities of the GBHM parameters for the field case
study given by considering (black curves) and ignoring (red curves) rainfall errors.
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errors, tj, is very close to the low limit of its prior range (i.e.,
44.4). This means that prior information on the variation of
input errors is important for model calibrations as reported by
Renard et al. [2010, 2011].
[53] We compared the inferred distributions of individual

latent variables for different gauges during a flood that
occurred on 22 September 1981 (see Figure 8) to analyze
cross correlation of the estimated input errors at different
rainfall gauges. The absolute values of correlation coeffi-
cients between the estimated input errors were mostly smaller
than 0.25, but the correlation coefficient between the esti-
mated input errors at the gauges P240 and P260 was�0.395.
This is reasonable, because the flow lengths from the two
gauges to the catchment outlet are very close, and the same
amount of rainfall occurring at either gauge would produce a
similar amount of discharge at the catchment outlet. Similar
correlation was found between the estimated input errors
at gauges P180 and P200 during another storm. The cross
correlations between the input errors of other gauges were
generally weak.

[54] Figure 9 illustrates the original and estimated spatial
distributions of precipitation in the Chuzhou catchment for
one time step during the flood on 22 September 1981; the
latter are calculated based on three posterior samples of the
input errors. The figure shows that the estimated precipita-
tion in most areas is close among different samples, whereas
those around gauges P240 and P260 apparently vary. Sim-
ilar to Figure 8, a negative correlation is found between the
estimated precipitations in the two regions. Although not
frequently appearing, the negative correlation may be caused
by the poor identifiability of the spatial input. Given that
there is much rainfall observed at gauge P260, the estimated
sample 2 may imply that the heavy rainfall could possibly
occur at gauge P240 instead of gauge P260 given what is
known about outlet discharge. The result demonstrates that
some model structure errors may be overfitted by the esti-
mated input errors, and therefore, more spatial information
and better priors are needed to resolve the ambiguity.

6.4. Calibration and Validation Results of Discharge

[55] To evaluate the calibrated discharge with associated
uncertainty, we plotted the estimated median discharge of
the GBHM model together with the predictive uncertainty
bands. Figure 10 shows the estimated median discharge of
the 16 floods and their corresponding measurements during
the calibration period. The Nash-Sutcliffe coefficient [Nash
and Sutcliffe, 1970] of the simulation is 0.97 in Figure 10a.
The model residuals in Figure 10b evidently exhibit hetero-
scedasticity, which has often been reported in other studies

Figure 8. Scatterplots and histograms of the estimated input errors for different rainfall gauges during the
flood on 22 September 1981.

Table 6. Posterior Statistics of Variables in the Bayesian Model
Other Than GBHM Parameters

mj tj ry rz ty tz

Mode �0.046 45.007 0.779 0.651 293.938 8.640
Median �0.041 45.612 0.757 0.651 311.487 8.628
Mean �0.038 46.213 0.746 0.652 321.400 8.628
Low HPD �0.050 44.440 0.571 0.568 151.660 6.468
Up HPD �0.014 49.921 0.903 0.735 511.983 10.703

LI ET AL.: CALIBRATION OF DISTRIBUTED MODEL WITH INPUT UNCERTAINTY W08510W08510

11 of 20



[Schaefli et al., 2007], thus justifying the separation of dis-
charge between low- and high-flow data. The normal prob-
ability of the high-flow residuals is plotted in Figure 10c.
Here, the residuals approximately follow the normal distri-
bution, although there are apparent deviations for those with
large absolute values.
[56] Figures 10d and 10e show the autocorrelation func-

tions (ACF) and partial autocorrelation functions (PACF) of
high-flow residuals, respectively. We can see that the first-
order autoregressive coefficient is mostly significant for the
high-flow period. The partial autocorrelation functions of
lags two and three are also notable, yet are smaller than 0.25.
As shown in Table 6, the estimated autocorrelation coeffi-
cient for low flow data in a daily time step is about 0.76,
while that for hourly high-flow data in an hourly time step is
about 0.65. These results confirm that the autocorrelation for
the low-flow period is more significant than for the high-flow
period, and that the two kinds of data should be treated sep-
arately in calibration.
[57] Figure 11 illustrates the 95% credible predictive

intervals of discharge obtained through the comparative
studies that estimate input errors (case (a)) or fix input errors
to zeros (case (b)). The narrower uncertainty bands are the
propagation of the uncertainties on the GBHM parameters
and on model inputs. The wider uncertainty bands are the
estimated total uncertainty bands with inclusion of residual
uncertainty for the narrow bands. The efficiency of predictive
uncertainty (EPU) and the continuous ranked probability
score (CRPS) [Gneiting et al., 2004] are introduced to

evaluate the predictive uncertainty, with the EPU coefficient
defined as the percentage of the observed discharge values
bracketed by the 95% predictive uncertainty limits—the most
desirable value of EPU is 95%. The CRPS score is defined as
[Gneiting et al., 2004]

CRPS ¼ 1

T

XT
t¼1

Z ∞

�∞
Ft qð Þ � H q� qtð Þð Þ2dq; ð10Þ

where Ft(q) denotes the cumulative probability function
(CDF) of the predicted discharge at time step t, H(q � qt)
denotes the Heaviside function of observed discharge qt.
H takes the value 0 when q < qt; the value is 1 otherwise. The
CRPS score takes the same unit as discharge and is more
desirable when it is smaller. Each of the values for EPU and
CRPS given in the figures of the present study is for the high-
flow period, since our focus is flood forecasting. In both
cases (a) and (b) in Figure 11, the observed discharge is well
bracketed by the total uncertainty bounds. Nevertheless, the
predictive discharge distribution when fixing input errors to
zero is worse (i.e., having relatively wider predictive uncer-
tainty bounds and larger CRPS scores) than that when esti-
mating input errors.
[58] We follow three main steps to perform the validation:

(1) pick one set of GBHM parameters from the MCMC
samples obtained in the calibration period; (2) pick one set of
input errors (j) from the MCMC samples of one randomly
selected flood event (out of 16) in the calibration period; and

Figure 9. Observed and estimated spatial distributions of precipitation over the Chuzhou catchment for a
time step during the flood on 22 September 1981. The angular distance-weighted method is used for the
spatial interpolation.
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(3) run the forward model (i.e., GBHM) using the parameters
and input errors chosen from steps (1) and (2). Because the
input errors are fitted in calibration and used in validation, the
input uncertainty in the validation period is typically larger
than that in the calibration period.
[59] Figure 12 shows the evaluation of predicted median

discharge for the 16 flood events in the validation period. The
calibrated model provides good predictions of the observed
data, with a Nash-Sutcliffe coefficient of 0.90. The normality
of the high-flow residuals in the validation period is worse
than that in the calibration period. Figures 12d and 12e show
the ACF and PACF of high-flow residuals in the validation
stage. Compared to the calibration stage, the autoregressive
coefficients of lags 1–7 in the high-flow period are important,
as are the partial autocorrelation coefficients of lags 2–3.
A possible explanation for the result is that the input errors in
the calibration period are estimated while those in the vali-
dation period remain unknown and are sampled from the
same input error distribution as used in the calibration period.

The input errors and the potential model structure errors may
lead to highly correlated residuals in prediction—this is an
issue that we will address in future studies.
[60] Figure 13 compares the estimated uncertainty with

and without estimating input errors in the calibration and
validation periods. In the case that includes estimated input
errors, the uncertainty bands caused by input uncertainty are
very wide and dominate the prediction uncertainty. EPU
values of 100% for the selected flood events are larger than
their most favorable value, 95%, which implies that the pre-
dictive distributions of discharge overestimated the uncer-
tainty. One possible reason is that the input errors picked up
for the validation period incorporated the interstorm variance
of input errors in the calibration period. Another possible
reason is that the estimated input errors overfit some model
structure errors in the calibration period; consequently, the
wide uncertainty bands may not be accurate. Nonetheless, the
wide uncertainty bands induced by large input uncertainty
are more efficient in bracketing observed discharge than

Figure 10. Evaluation of the estimated discharge medians for the calibration period: (a) medians of the
estimated discharges (black curves) and observed discharges (red circles); (b) plots of residuals between
the simulated and observed discharges; (c) normal probability plot of residuals for the high-flow data;
(d) autocorrelation functions (ACF) of high-flow residuals; and (e) partial autocorrelation functions (PACF)
of high-flow residuals. For readability, 16 isolated floods are plotted together in Figures 10a and 10b.
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are the uncertainty bands estimated with zero input errors.
Meanwhile, the CRPS scores in Figure 13 also suggest that
most predictive CDFs estimated jointly with input uncer-
tainty are better than those estimated without considering
input uncertainty. In addition, the input and model structure
uncertainties for flood forecasting are quite significant,
although we have not explicitly accounted for the latter in the
present study.

6.5. Evaluation of Predictive Uncertainty

[61] The predictive quantile-quantile plot (PQQ) for criti-
cally evaluating predictive uncertainty was introduced by
Thyer et al. [2009] and has been frequently adopted since
then [Renard et al., 2010; Schoups and Vrugt, 2010] to test
the consistency of predictive distribution with observed data.
The cumulated probability of observed discharge in the pre-
dictive CDF is called the observed p value. The observed
p value theoretically has the uniform distribution on (0, 1) if
the observed data are consistent with samples from the pre-
dictive PDF.
[62] Figure 14 shows the influences of input uncertainty

on predictive uncertainty in the calibration and validation
periods using the PQQ methodology. Here we show only the
results that are related to the high-flow data, since the focus
of this study is flood forecasting. For the calibration period,
the PQQ curves of most flood events are near the diagonal
line when the hydrological parameters and input errors are

jointly estimated (see Figure 14a). The large symbols that
represent peak flow distribute evenly in the PQQ curves. This
result suggests that the predictive distribution is consistent
with observed data. When input errors are ignored, the PQQ
curves in calibration are more dispersive (see Figure 14b).
This means the estimated predictive distributions are more
frequently overestimating or underestimating the predic-
tive uncertainty when ignoring input errors than considering
input errors.
[63] Figures 14c and 14d show that the consistency of

the predictive distributions with observed data is worse in
validation than in calibration, which is consistent with the
detailed predictive uncertainty bounds shown in Figures 11
and 13. The uncertainty of observed data with relative small
magnitude (i.e., having small size) tends to be overestimated
more often, since many of them have p values within (0.2,
0.8). This is similar to the finding of Thyer et al. [2009].
Observed data with relative large magnitude tend to have
p values near 0 or 1, and off the 1:1 line, which means that the
uncertainty of flood peaks is still underestimated or over-
estimated in spite of the wide predictive uncertainty limits
shown in Figure 13. Comparatively, underestimation of flood
peaks is more frequent than overestimation, because the large
symbols have more p values near 1 than near 0, especially
when input errors are not considered. Figure 14d shows that
neglecting input errors results in a low EPU coefficient, high
CPRS score, and frequent underestimation of flood peaks.

Figure 11. Simulated and observed discharges for the calibration period: (a) Bayesian model that esti-
mates j together with GBHM parameters in calibration. The darker shadow areas show the 95% model
simulation uncertainty related to the uncertainty of GBHM parameters and input errors. The lighter shadow
areas show the total uncertainty with the additional influence of model residuals. Within a flood event, dis-
charges with relatively wide uncertainty ranges are those classified into high-flow data; others are classified
into low-flow data. (b) Fixing j = 0 in calibration. Thus, the dark shadow areas are related exclusively to
parameter uncertainty.
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[64] The results presented in the previous subsections are
based on the upper bounds of 15% for the standard deviation
of input errors. We also carried out analysis for the field study
using the upper bounds of 10%, 20%, and 30% for the stan-
dard deviation of input errors. We found that most parameters
are not very sensitive to the prior upper bounds of input
errors, except for the evaporation parameter (kep) and the
slope shape factor ( fss). However, the effects on estimation of
input errors are large, and this is consistent with the findings
by Renard et al. [2010, 2011].

7. Discussion

7.1. Likelihood Function

[65] The construction of a suitable likelihood function is
crucial for Bayesian analysis because the likelihood function
determines how unknown parameters are linked to data.
In this study, the separation between low- and high-flow data
and employment of autoregressive models are two key
assumptions for the derivation of likelihood functions.

[66] The present method of classifying discharge data is a
variation of the finite mixture model presented by Schaefli
et al. [2007]. The advantage of classifying discharge data is
that we can adopt different statistical models to different data
sets, such as different time steps and different transforma-
tions. We use an hourly time step for the high-flow period
and daily time step for the low-flow period. Moreover, clas-
sifying the hydrological parameters in accordance with dif-
ferent classifications of data sets is possible because some
parameters are related to low-flow data and some are pri-
marily related to high-flow data. We could classify such
parameters in the future when we find a data transformation
method to reduce the error propagation between the low-flow
and the high-flow periods. The classification method is lim-
ited by the need to maintain independence among different
classifications. Thus, it should be conducted based on a
physical rationale. To avoid confusion, we abandon some
discharge data sets with a high-flow period mixed with a low-
flow period in the current study.

Figure 12. Evaluation of the estimated discharge medians for the validation period: (a) medians of the
estimated discharges (black curves) and observed discharges (red circles); (b) plots of residuals between
the simulated and observed discharges; (c) normal probability plot of residuals for the high-flow data;
(d) autocorrelation functions (ACF) of high-flow residuals; and (e) partial autocorrelation functions (PACF)
of high-flow residuals. For readability, 16 isolated floods are plotted together in Figures 12a and 12b.
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[67] The results of both synthetic and field case studies
show consistency of the AR(1) model with model residuals
(see Figure 10). Nevertheless, validation results from the
field case study reveal that autocorrelation functions of
higher lags are also important in prediction (see Figure 12).
In addition to adopting autoregressive models based on
time series analysis, there is potentially an alternative way of
treating a flood event in its entirety and constructing like-
lihood functions based on the internal structure of residual
series.
[68] Spatially distributed data can be adopted for calibra-

tion and diagnosis of distributed hydrological models [Marcé
et al., 2008]. Under the Bayesian framework, further research
is expected to combine different likelihood functions from
varied information to calibrate spatially distributed para-
meters. More general likelihood functions other than normal
distributions are also expected to improve the inferences of
the parameters [Schoups and Vrugt, 2010].

7.2. Influence of Input Uncertainty

[69] The input uncertainty of the GBHM model is repre-
sented by spatially distributed relative rainfall errors in the
developed Bayesian model. Results from the synthetic case
study show that the integrated estimation of input errors leads
to a more reasonable calibration of the GBHM parameters,
including the posterior medians and the uncertainty bands.
The field case study also reveals apparent differences between
the posterior distributions of certain GBHM parameters with
and without considering input uncertainty. These differences

emphasize the significance of considering input uncertainty
in calibration, as reported by the BATEA and DREAM
approaches [Kavetski et al., 2006; Vrugt et al., 2008]. The
most evident influence of input uncertainty is in the valida-
tion period of the field case study, where the consideration of
input uncertainty expands the predictive uncertainty bands to
bracket a number of observed discharge values (see Figure 13)
and improve the performance of predictive distributions
(see Figure 14), especially for flood peak periods. However,
it is still challenging to fully cope with the effects of input
uncertainty, because of the compound effects of model
structure uncertainty and the poor identifiability of spatial
input errors.
[70] In the prior model, the input errors of the GBHM

model at different gauges are specified as independent. The
spatial correlation of the input errors for different computa-
tion grids is propagated by the interpolation of the estimated
precipitation at the gauges. The calibration result of the field
case study reveals that the estimated input errors are some-
times negatively correlated when the flow distances are close
(see Figures 8 and 9), which displays the limitation of the
current Bayesian inference of using only outlet discharge for
estimating spatially distributed variables. Spatially distributed
information is important for better inference because of
this limitation. Meanwhile, both the synthetic and the field
case studies demonstrate that the estimated input errors are
restricted by the specified prior ranges of their hyperparam-
eters. The estimated input uncertainty would be larger if we
release the restrictions. Therefore, prior knowledge of rainfall

Figure 13. Predicted and observed discharges for the validation period: (a) Bayesian model that estimates
j together with GBHM parameters in prediction. The darker shadow areas show the 95%model prediction
uncertainty related to the uncertainty of GBHM parameters and input errors. The lighter shadow areas show
the total uncertainty with additional influence of model residuals; and (b) j = 0 fixed in prediction. Thus,
the dark shadow areas are related exclusively to parameter uncertainty.
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observation and distribution is crucial for more accurate
estimation of input errors. Studies on quantitative estimation
of spatially distributed precipitation [Clark and Slater, 2006;
Renard et al., 2011] can help improve existing knowledge
of rainfall uncertainty.

7.3. Influence of Model Structure Uncertainty

[71] Model structure uncertainty is not represented
explicitly in the current study, although we have shown the
interaction between the input and the model structure errors
in the synthetic study (see Table 4). The estimated input
errors may fit the model structure errors because they are
both storm dependent, which is termed as compensatory
behavior by Kavetski et al. [2006]. Therefore, the prior ran-
ges of the hyperparameters of input errors are specified to
prevent the trend of overfitting. The difficulty of identifying
input and model structure errors together has been discussed
extensively by Renard et al. [2010], based on the BATEA
framework [Kuczera et al., 2006]. We would emphasize that
the estimation of model structure uncertainty is another
challenging topic that deserves further investigation.
[72] In the present study, the effect of the model structure

errors onmodel residuals is characterized by the AR(1) model,
because model structure errors are usually autoregressive due

to internal storage processes [Bates and Campbell, 2001;
Yang et al., 2007]. The input errors also lead to autocorrela-
tion in model residuals. Therefore, the estimated autocorre-
lation of model residuals is a combined effect of both model
structure uncertainty and input uncertainty.
[73] Nevertheless, we believe that model limitations are

partially caused by the residual influence of model structure
uncertainty. For example, some estimated physical parameters
are evidently different from their database or point observa-
tion values, the estimated inverse variance of rainfall errors is
close to the low limit of its prior range, and the predictive
distributions of the peak period discharge in the validation
period tend to underestimate the predictive uncertainty, even
if the input uncertainty is considered. Further studies are
certainly needed to improve our understanding of the phys-
ical parameters of catchments, the inversion of input errors,
and the performance of the predictive distributions.

7.4. Sensitivity of Calibration Results to Prior
Information

[74] Acknowledging that the accuracy of prior distribu-
tions is crucial for calibration results, we have conducted
sensitivity analyses for both the synthetic and field case
studies. Sensitivity is low for the synthetic study and high for

Figure 14. Predictive quantile-quantile plot (PQQ) of the estimated predictive uncertainty for both cali-
bration and validation periods. The PQQ curves of 16 flood events are plotted together. The symbol size
is proportional to the magnitude of the observed data.
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the field case study. For the field case study, the influence is
relative lower for the calibration results of GBHM para-
meters, but higher for the inferred input errors and for the
predictive uncertainty. This confirms the findings of Renard
et al. [2010] that the inference of input errors is ill-posed
when the prior information is not sufficiently accurate. An
alternative way to determine prior information is needed for
both the inference of input errors and for the decomposition
of predictive uncertainty.

8. Conclusions

[75] We have developed a Bayesian model to aid in pre-
dicting mountain floods and have investigated calibration of
hydrological parameters with consideration of input errors in
a distributed hydrological model. The synthetic case study
shows that the developed method can be used to calibrate
GBHM parameters and to estimate the associated uncer-
tainty. The calibration ignoring input errors has lower accu-
racy and lower reliability compared to the calibration that
includes estimation of the input errors, especially under
model structure uncertainty.
[76] However, calibration of GBHM parameters under

complex field conditions remains a challenge. Although
jointly estimating input errors and GBHM parameters
improves the continuous ranked probability score and the
consistency of the predictive distribution with the observed
data, the improvement is incremental. To better calibrate
parameters in a distributed model, such as GBHM here, we
need to develop a more complex model and incorporate
much more information.

Appendix A: Probability Density Function
of Truncated Normal Distribution

[77] When variable x is distributed normally within an
interval (a, b), the probability density function can be written
in the following form [Huard and Mailhot, 2008]:

f xð Þ ¼
1

s
⋅ f

x � m
s

� �
F

b � m
s

� �
�F

a � m
s

� � ; ðA1Þ

where m is the mean, s is the standard deviation, f() is the pdf
of standard normal distribution, and F() is its cumulative
distribution function. Here, we assume that jk,j for different
storms at the same gauge follows a truncated normal distri-
bution within (�1, +∞), with mean mj and inverse variance
tj. Thus, the pdf of jk,j is given as
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where erf() is the error function (http://en.wikipedia.org/
wiki/Error_function).

Appendix B: Derivation of Likelihood Functions
Based on the AR(1) Model

[78] The original form of the likelihood function is given
in equation (4). Assuming the residuals following the AR(1)
model [Naidu, 1996], the terms in the covariance matrix,
Sk, are

cov ɛy;t; ɛy;t�c

� � ¼ ðryÞc
ty

; c ¼ 1;…; n: ðB1Þ

[79] Therefore, Sk = Rk /ty, and

Rk ¼

1 ry � � � ðryÞn�1

ry
. .
. ..

.

..

. . .
.

ry
ðryÞn�1 � � � ry 1

0
BBBBB@

1
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where Rk denotes the correlation coefficient matrix of the
model residuals. The likelihood function is thus written as

f
�
Yk jq;jk ; ry; ty;Xk

�
∝ Rkj j�1
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1
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2
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where

Sk ¼ Yk � Ysim
k

� �T
R�1
k Yk � Ysim

k

� �
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[80] Using the Cholesky decomposition of matrix Rk, we
can have

R�1
k ¼ UT

k Uk ; ðB5Þ

where Uk is an upper triangular matrix. Therefore, Sk can be
evaluated by

Sk ¼ Yk � Ysim
k

� �T
UT

k Uk Yk � Ysim
k

� �
¼ Uk Yk � Ysim

k

� �� �T
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k
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